Verifiable Multi-Party Business Process
Automation

Joosep Simm, Jamie Steiner, and Ahto Truu

Guardtime, A. H. Tammsaare tee 60, 11316 Tallinn, Estonia
{joosep.simm, jamie.steiner,ahto.truu}@guardtime.com

Abstract. Lack of trust is one of the main problems preventing multi-
party business process automation. Solutions based on smart contracts
and distributed ledgers have been proposed, but suffer from scalability
issues. We present a more performant alternative approach to enable
trust between business partners, based on authenticated data structures.

Keywords: Multi-party business process automation, distributed ledger tech-
nology, authenticated data structures, sparse Merkle trees.

1 Introduction

Business process automation (BPA) is the use of technology to execute recur-
ring tasks or processes with the goal of replacing manual effort. Sometimes also
referred to as digital transformation, its potential benefits include increasing
service quality, improving service delivery, and reducing costs.

Most BPA deployments aim to automate a firm’s internal operations. How-
ever, many business processes are composed of a series of steps taken by different
firms. Single-party business processes such as invoice production and processing,
which might be handled using a corporate enterprise resource planning (ERP)
system, can be viewed as steps in the overarching multi-party business process
of two or more firms engaging in a trade of goods or services. Thus, if BPA aims
to improve performance of a firm’s internal business activities, we may define
multi-party business process automation (MPBPA) as the use of technology to
optimize and automate firms’ interactions with each other.

As an example, we may consider a hypothetical supply chain relationship. A
Supplier regularly produces and ships widgets to a Customer. The widgets are
transported by a series of third-party Logistics companies. Payment is typical
net 30 terms. Since the Supplier is interested in being paid as soon as possible,
he uses the services of a Bank, which pays the Supplier upon delivery to the first
Logistics provider, in exchange for interest. This arrangement is common and is
effectively a loan secured by the Supplier’s receivables.

The challenges in realizing MPBPA differ from those solved by extant BPA
technology. The most important difference is the inherent lack of trust between
firms on matters of value. A firm would be naturally hesitant to allow a computer

program to automatically pay invoices; instead, review and approval by a trusted
employee in accounts payable is typically required. If it were possible to automate
such interactions in a trusted way, many of the same benefits that BPA has
yielded within the scope of individual firms could be realized at an inter-company
or even systemic level. In our example, the Customer receives the goods, and
must reconcile the received amount against the invoice. Then they must make
payment to the Bank according to their terms. The Bank receives payment and
also reconciles it against the terms of the original invoice before extinguishing
the loan to the Supplier.

The existence of current manual reconciliation processes shows that firms are
willing to pay a substantial premium to ensure that business rules, designed to
protect against fraud or error, are applied correctly.

Distributed ledger technology (DLT) can be described as the process of repli-
cating and synchronizing shared data between several mutually distrusting par-
ties. The data can then be relied on in situations where no single party can
be trusted to create and maintain a central database. Byzantine fault tolerant
(BFT) consensus protocols are typically used for the replication and synchro-
nization, and are often seen as the underlying technological basis for DLT. These
consensus algorithms, however, present a number of challenges.

First, BFT consensus has high network overhead. This has caused many
practical implementations to appoint a small subset of nodes in the network as
designated validators who receive all transactions. The validators then apply the
business rules, which are encoded in the ledger itself as so-called smart contracts,
to determine which transactions are valid, and follow the consensus protocol to
agree on how the ledger state should be updated.

Second, clients might not want to share their confidential business data. In
such cases, only the parties to a contract would receive the transaction details
and know the code to be executed. In our example, trade information is com-
mercially sensitive. For example, the supplier may not want other customers to
know that they provide widgets to one customer at a discount, because other
customers might also ask for a discounted price. Thus, the parties execute the
code independently and only post attestations about the current state of the
contract to the ledger. The validators follow the consensus protocol to ensure
that the attestations are reliably recorded.

In the latter case, the validators do not know the transaction data or the
contract code. Thus, they can not possibly know whether the contract has been
executed correctly. The attestation of state is still useful, however, since all
parties can be assured of having a common, non-repudiable view of the state. We
refer to this arrangement as using “privacy limited validation.” In a supply chain
context, if the validators were also part of the supply chain, by validating their
competitors’ plain text transactions, they might be able to obtain commercially
useful information that they would not otherwise be entitled to.

In summary, several key ingredients are necessary for multi-party business
process automation:

— a process definition which describes the possible or acceptable interactions
between the parties, i.e. the business rules;

— a reliable record of the information added by different parties, at different
times, to contribute to and progress the execution of that process;

— means to prevent parties from repudiating the current process state, claiming
an alternative process state, or claiming alternative histories of how the
process progressed to the current state.

Smart contracts underpinned by DLT are one way to meet the above require-
ments. However, implementations that use them have proven difficult to scale.
We propose an alternative approach that is more scalable and can be used as
the basis for many of the multiparty process enforcement use cases that others
address through DLT. Our solution is based on committing process states into
an authenticated data structure (ADS) operated by a server whose actions can
be independently verified.

2 Related work

Several DLT-based business process management (BPM) systems have been pro-
posed to support execution of multi-party processes.

Caterpillar [7] is a BPM system that runs on top of the Ethereum blockchain.
It keeps all process related data on the blockchain, in order to ensure its relia-
bility. On one hand, no off-chain data is required to read or execute a process.
On the other hand, potentially sensitive data must be posted to the blockchain.

Lorikeet [16] is a model-driven engineering tool. It generates smart contract
code (in the Solidity language of the Ethereum blockchain) from a Business
Process Model and Notation (BPMN) representation. It uses DLT for commu-
nication between parties, but sensitive data is not posted to the blockchain.

Both solutions suffer from the inherent limitations of DLT design, namely the
overhead required to reach consensus between parties. This limits the throughput
of these systems. A comparative overview of these systems is given in [5].

The Laava platform [17] focuses on multi-tenant aspects of BPM and pro-
poses to solve these by creating a private blockchain instance for each tenant
and periodically aggregating the states of these private chains into a commit-
ment posted to a public blockchain as an external anchor. A drawback of this
approach is that a user would still have to scan a whole private blockchain to
extract, prove, or verify the history of one process.

There are other solutions outside of academic research, such as the Proof
of Process by Stratumn [14]. Their system is also based on DLT, and therefore
inherits its limitations.

Mendling et al. [8] discuss different directions in business processes and block-
chain interaction. One of the proposed approaches is based on monitoring:

This provides a suitable basis for continuous conformance and compli-
ance checking and monitoring of service-level agreements. Second, based
on monitoring data exchanged via the blockchain, it is possible to verify

if a process instance meets the original process model and the contractual
obligations of all involved process stakeholders.

Our proposed solution is close to this description. It does not put restrictions on
execution of business processes, but provides a secure, performant, and scalable
way to monitor the execution of multi-party processes.

Breu et al. [2] introduced the distinction between process orchestration, where
the process instance is managed by a central service provider, and process chore-
ography, where the ownership of the instance is transferred from one participant
to another. We note that our monitoring-based approach is applicable in both
cases and perhaps even more valuable in the context of choreographies where it
is easier for the parties to get confused over the current state of the process [11].

3 Preliminaries

A hash function h maps arbitrary-sized inputs to fixed-size outputs.

Hash values are often used as representatives of inputs that are either too
large or too confidential to be handled directly. For example, in the hash-then-
sign model, a document’s hash value is signed instead of the document itself.
Likewise, in the hash-then-publish time-stamping model, a hash value is pub-
lished to establish evidence of the existence of the input without disclosing the
input itself.

To facilitate such uses, cryptographic hash functions are required to have
several additional properties, such as one-wayness (it is infeasible to reconstruct
the input from the output), second pre-image resistance (it is infeasible to change
the input so that it still maps to the same output), and collision resistance (it
is infeasible to find two distinct inputs mapping to the same output). We refer
to [12] for a more extensive treatment.

SHA-256 and SHA-512 are practical hash functions (with 256-bit and 512-
bit outputs, respectively) that have all these properties and are expected to
withstand cryptoanalytic attacks on them for at least the next ten years [10].

T = h(x1,2,w3,4) T
' X
~ \
/ AN / N
z1,2 = h(z1, z2) 23,4 = h(zs,z4) T1,2 X34
2 n
/ /
/ \) '\) \
1 2 X3 T4 T3 T4

Fig. 1. Merkle tree with 4 leaves and the hash chain linking z3 to r.

Hash trees [9], also known as Merkle trees (MT), are tree-shaped structures
of hash values. Each node is either a leaf with no children or an internal node

with two children. The value = of an internal node is computed as = = h(x;,),
where x; and x, are the values of the left and right child, respectively. There is
one root node r that is not a child of any node.

In order to prove that a value x; participated in the computation of the root
hash r, it is sufficient to present values of all the sibling nodes on the unique
path from z; to the root of the tree, along with the “shape” of the path (defining
the concatenation order on each step). For example, to claim that x3 belongs to
the tree shown on the left in Fig. 1, one has to present the values x4 and z o
to enable the verifier to compute x3 4 = h(zs,x4), 7 = h(x1,2,x3.4), essentially
re-building a slice of the tree, as shown on the right in Fig. 1.

A standard hash tree can thus be used to prove that a value was in a set
(so-called “inclusion proof”). It is, however, not suitable to proving that a value
was absent from a set (so-called “exclusion proof”). The value could be in any
node, and to verify its absence, the whole tree would have to be scanned.

A way to overcome this limitation is to dedicate a leaf to each potential value
of the set. Then the leaves corresponding to values not in the set could be set to
some “empty” sentinel value (shown as white in Fig. 2) and absence of a value
in the set can be proven by showing that the dedicated leaf is empty.

Fig. 2. Sparse Merkle trees: an empty one (left), and a populated one (right).

With 256-bit hash values, such a tree would have 2256 leaves, which is clearly
infeasible. To resolve this, we amend the rule for populating internal nodes so
that a parent of two empty child nodes also gets the “empty” value, and hashing
is only used to compute values of parents with at least one non-empty child.
Such a tree, called sparse Merkle tree (SMT), is fully defined by its non-empty
nodes (shown as black in Fig. 2), the number of which is more tractable.

An SMT can also be used to manage maps of key-value pairs. In this case,
the hash of the value is stored in the leaf dedicated to the hash of the key, and
the leaves corresponding to absent keys will be left empty [1, 4].

4 Our approach

Verifiable business processes (VBP) is a transaction-based server-centric solution
for adding trust to a registry or a service in order to achieve verifiable multi-
party business process automation. In the case of traditional blockchains, new
transactions are approved by majority agreement; VBP instead is based on single

trust domain where it generates proofs of correct operation, which would make
incorrect behavior immediately evident. VBP consists of:

— authenticated data structures (Sec. 4.1);
— verifiable state machines (Sec. 4.2);
— verifiable log of registry changes (Sec. 4.3).

4.1 Authenticated Data Structures

An authenticated data structure (ADS) is a data structure whose operations can
be carried out by an untrusted service provider, the results of which a verifier
can efficiently check as correct [15].

VBP uses an authenticated map of key-value pairs maintained in a sparse
Merkle tree (SMT). A VBP server maintains one such tree and populates it
incrementally, starting from an empty tree. For better performance, the server
operates in rounds, collecting updates within a time period and committing
them as a batch at the end of the round. All modifications are public for the
participants of the process, which enables them to audit the operation of the
server if they wish to do so.

The root of the SMT is the trust anchor for the proof holder. It is critical for
a verifier to know that only one root value is produced at the end of each round.
This guarantees there exists only one version of the tree for all participants. Our
solution uses a set of external auditors who digitally sign the roots of the SMT
for that purpose.

4.2 Verifiable State Machines

The SMT, by itself, cannot be used to describe a business process. We assume
that the allowed states and transitions of each process are defined in some for-
malism. This could be based on a general standard, such as BPMN, or some
custom formalism. For VBP the main requirements are:

— the process description can be deterministically serialized;
— a process instance’s state can be deterministically serialized.

VBP tracks the state of each process instance as a key-value pair where the
key is a permanent and unique process identifier and the value represents the
current state of the process instance. For example, a single shipment from the
Supplier to the Customer might be represented in a single leaf. The hash of the
process identifier determines the leaf of the SMT for tracking the evolution of
the state of that process instance and the hash of the current state is stored in
the designated leaf of the SMT.

It is desirable to use meaningful process instance identifiers, as this reduces
the risk of participants mistaking a process instance for another. For that, partic-
ipants need to agree on the naming convention for process instances, in addition
to the verification logic for the business process model they are participating in.
For example, the counterparties, invoice number, and date of shipment might be

used to derive the process instance identifier. A single SMT can be used to hold
multiple instances of the same kind of process, or of different processes.

As a process is executed, participants send hashes of the updated process
states to the VBP server. The server will record each update in the corresponding
leaf of the SMT. This enables extraction of a proof of state for that process
instance relative to the root hash of the SMT. Anyone who holds the process
instance and the state proof can verify independently that the process instance
is in fact in that state and that other participants must know the same. If a
process instance is altered to indicate that the shipment has been delivered to
the Customer, the hash value for this process will change. Anyone might see that
this has occurred, but without having access to the underlying process instance
data that is hashed, it reveals nothing. Thus, the VBP server functions as an
independent witness of the process state, but without having to know anything
about the transactions or the business rules, in the manner described as the
“privacy limited validation” in Sec. 1.

How the process instance moves from one party to another is beyond the
scope of VBP. This could be done by any means of transport agreed upon by
the participants. In all cases, the integrity of the process instance is guaranteed
by the VBP server. Note that the VBP server does not receive any sensitive
data to provide that service. Only meta-data on when processes are started and
modified is required.

Our current implementation uses a JavaScript based process definition library
to describe the process verification rules. Process definitions are modeled as finite
state machines (FSM). The same library generates representations of process
instances. These are not based on BPMN, although it would be possible to
generate these artifacts from a BPMN tool.

4.3 Verifiable Log of Registry Changes

The evolution of process instances can be modeled as a new SMT being con-
structed by the VBP server for each round. To ensure that all participants have
a consistent view of the evolution of a process, we need to prove that the server
is not maintaining parallel histories for a process instance and showing differ-
ent histories to different participants. This general goal can be broken down in
following more specific questions:

— How can we prove that a given state for a particular process instance is the
current state?

— How can we prove that state was not changed and changed back in secret at
some time in the past? (We have termed this the “flip-flop” attack.)

— How can we efficiently traverse the history of state changes of a process
instance?

Eijdenberg et al. [6] discuss the properties of verifiable log backed maps (VLBM)
where the history of changes to a simple SMT is recorded in a verifiable log for
auditing purposes. However, full audit is required to prove correct operation of

a VLBM. Since a full audit would be impractical in large trees, it could allow a
malicious operator to perform flip-flop attacks with low probability of detection.

The data structure used in VBP improves upon the VLBM in this respect.
Instead of just the hash of the state of a process instance, each leaf of the SMT
in VBP stores a record (H,C,T) where:

— H is the hash of the current state;

— C is the counter of state changes since the process instance was created;

— T is the time of the last state change (expressed as the number of the round
when that change was recorded in the SMT).

This data structure enables efficient auditing of the VBP server in a manner
similar to the server auditing process described in [3]. For efficency, the VBP
server applies updates to the SMT in batches. An auditor keeps the current
value of the root hash of the SMT as its internal state and uses that to verify
the correctness of the updates submitted by the server. The correctness of the
batch of updates that transforms the SMT with the root hash R in round N to
the SMT with the root hash R’ in round N + 1 as follows:

1. The auditor sets R* to R, to start from the SMT state as of round N.

2. For each process state update, the server presents

— the record X = (H,C,T) of the process instance state as of round N;

— the hash chain A linking X to R*;

— the updated record X' = (H',C’,T").

3. The auditor processes each of those updates by

— checking that A indeed links X to R*; this establishes the correctness of
the initial state of the record;

— checking that C' = C+1 and T" = N +1; this establishes the correctness
of the update of the metadata in the record; note that the auditor does
not check the state change, because it is auditing the behavior of the
VBP server and not of the business process participants;

— updating R* to the output value of the hash chain A when the record
X is replaced with X’; note that the hash chain A is the same as in the
first check, which ensures that the server could not have changed any
other records with this update.

4. After processing all updates, the auditor checks that R* = R’; this ensures
that the server has presented exactly the set of updates that transformed
the SMT from the state with the root R to the state with the root R’.

5. If all the checks pass, the auditor signs the new root hash value R’ as ap-
proved and the server can use it as a reference relative to which proofs can
be delivered to clients and also as the starting state for the next batch of
updates.

Crucially, the audit protocol allows multiple auditors to work in parallel and
independently sign their approvals, thus avoiding the need for a distributed con-
sensus protocol, which would reintroduce some of the limitations of DLT.

For clients, the VBP server provides an interface for querying the (H,C,T)
records, together with the associated hash chain proofs. This enables efficient

traversal of records relating to a particular process. The client can query the
latest state of the process, then use the time T of the last change to query the
previous state at time T'— 1, and so on until the history of the process instance
has been traced back to its creation.

The client can then verify that all the state transitions are indeed valid
according to the agreed process model. The client can also verify that the counter
of state changes increases by one with each change, which ensures that there are
no other changes to the process state outside this reported history.

This mode of operation prevents the possibility that processes could be al-
tered briefly, in collusion with the VBP server operator, for the purpose of pro-
ducing a fake “proof” of an incorrect state, after which the process would be put
back to the correct, unaltered state.

Motivations for doing this attack could vary, for example, our Supplier might
wish to obtain a proof attesting more widgets had been shipped than really had,
for the purpose of fraudulently recognizing revenue early. Since the shipment
process state would be corrected moments later by removing the invalid step
from the process data, it would be extremely unlikely that anyone would notice.

This type of fraud mainly affects parties who are not participating in the
process, but have some outside interest in it, and rely upon its accuracy for
some reason. Without a mechanism to prevent it proactively, this type of fraud
can only be detected by full audit.

5 Discussion

5.1 Storage requirements

Keeping the SMT with full modification history takes storage space. Each inter-
nal node of the SMT contains a hash value of k bits. In the leaf nodes the size of
the hash value dominates over the two integers, so for simplicity we can assume
equal-sized nodes. As only the hashes of the process states are kept in the SMT,
the space requirement does not depend on the size of process states, but only on
the number of process instances and their modification rates.

When a full SMT would be naively stored for each round, each process in-
stance would fill one leaf node and cause at most k internal nodes to be popu-
lated with non-empty values, for a total of about N - M -k nodes for M processes
maintained over N rounds.

However, if only a minority of the processes change in each round, most nodes
of the SMT remain the same from one round to the next and those nodes can
be shared between the two trees, thus reducing the storage to N - C - k, where
C is the average number of process instances that change per round.

Since the tree is a sparse one, most paths from a non-empty leaf to the root
have many empty siblings. Neither these siblings nor the parents computed from
them need to be stored, as each such parent can be re-computed on demand
from the only non-empty child. With this optimization, only logy, M nodes need
to be kept on an average path, for a total of N-C'-log, M nodes, each containing
k bits, or k/8 bytes of data.

The process count is not a constant, however. The append-only nature of the
SMT means it is always growing. We can assume constant rate of new process
instances to get some useful estimates. For example, with 1000 clients and 1000
new process instances per client per year, and an average of 10 state modifications
per process instance, we get the rate of about 10 million updates per year and
the tree with 1 million leaves by the end of the first year, 2 million leaves by the
end of the second year, etc. Some example schedules of storage requirements are
listed in Table 1.

Table 1. Storage requirements of a VBP server, depending on the number of clients,
number of new process instances per client per year, and the number of state updates
over the lifetime of a process instance, assuming a 256-bit hash function.

Clients | Processes | Updates | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 | Total
1000 1000 10/6.4 GB|6.7 GB|6.9 GB|7.0 GB|7.1 GB|34.1 GB
10000 10000 100|8.5 TB|88 TB|9.0 TB|9.1 TB|9.2 TB|44.7 TB

It is up to the application to decide how long historical state should be stored. A
rolling window approach (e.g., store only last year’s worth of full proof history)
could be applicable in many cases.

5.2 Deployment models

Depending on the business needs, there are multiple ways the VBP service could
be deployed. A few examples:

1. Internal organization process auditing: Deploy a VBP server for the organi-
zation only. No need for external auditors. Root publication does not have
to be global.

2. Coordinate processes within a consortium: Deploy one VBP server for the
consortium. Appoint auditors trusted by the consortium members for the
VBP server validation and root attestation.

3. Need to prove small number of processes in global scale: Use a global VBP
service provider. Service provider handles VBP service auditing and root
publication for many clients. Processes are provable independently from the
infrastructure of any one organization.

4. Need to prove many processes, some locally, some globally: Use a layered fed-
erated architecture, as shown on Fig. 3. Intra-organizationally, short proofs
up to the root of the local tree suffice. Cross-organizationally, full proofs up
to the root of the global VBP publishing service are needed.

6 Conclusions

We have proposed an alternative to distributed ledgers for adding integrity to
multi-party business process automation. This solution uses a “trust, but verify”

Auditor approval v v v
Publishing round EE 98 99 100 101

Global publishing service

Clients

Fig. 3. VBP root publication scheme.

model, which allows us to create a highly scalable solution. In addition, our
solution does not require each participant to install new infrastructure. The
central piece—the VBP server—could be shared between many participants in
a software-as-a-service (SaaS) model.

Our main contribution is adding efficient auditability of modification history
to the sparse Merkle tree (SMT) based authenticated data structure, which
protects clients against malicious behavior by the service provider, including
advanced threats, such as the “flip-flop” attack (cf. Sec. 4.3).

The other contribution is showing how such an authenticated data structure
could be used in multi-party business process automation use cases.

7 Future work

A known limitation of VBP is that it can handle only linear processes. Extending
the model to support branching, parallel execution, and merging is an interesting
avenue of future research.

Another direction would be to develop a root publication service, so it would
be usable by other VBP server instances. The layered deployment model pro-
posed in Fig. 3 is conceptual and needs more research.

The solution is not yet integrated into any established BPM systems. This is
a possible direction of future practical development effort. As the VBP server is
agnostic to what data it contains, multiple such integrations could be supported
even by a single instance of the VBP service.

Also, it would be beneficial to implement more real-life use cases with this
model, to find shortcomings that could be addressed in the future. Currently,
a previous version of VBP is used in one production system for monitoring
the business process execution and easing the auditing process of the Certus
service [13].

Acknowledgements. This research was partly supported by the EU H2020 project
PRIVILEDGE (grant 780477). The authors are also grateful to the anonymous
reviewers who pointed out additional related work.

References

1.
2.

10.
11.

12.

13.
14.
15.

16.

17.

M. Bauer. Proofs of zero knowledge. https://arxiv.org/abs/cs/0406058, 2004.

R. Breu, S. Dustdar, J. Eder, C. Huemer, G. Kappel, J. Képke, P. Langer, J. Man-
gler, J. Mendling, G. Neumann, S. Rinderle-Ma, S. Schulte, S. Sobernig, and B. We-
ber. Towards living inter-organizational processes. In 2013 IEEE 15th Conference
on Business Informatics, pages 363—-366. IEEE, 2013.

A. Buldas, R. Laanoja, and A. Truu. A blockchain-assisted hash-based signature
scheme. In NordSec 2018, volume 11252 of LNCS, pages 138-153. Springer, 2018.
R. Dahlberg, T. Pulls, and R. Peeters. Efficient sparse Merkle trees. In NordSec
2016, volume 10014 of LNCS, pages 199-215. Springer, 2016.

. C. Di Ciccio, A. Cecconi, M. Dumas, L. Garcia-Banuelos, O. Lépez-Pintado, Q. Lu,

J. Mendling, A. Ponomarev, A. B. Tran, and I. Weber. Blockchain support for
collaborative business processes. Informatik Spektrum, 42:182-190, May 2019.

A. Eijdenberg, B. Laurie, and A. Cutter. Verifiable data structures.
https://www.continusec.com/static/VerifiableDataStructures.pdf, 2015.

O. Lépez-Pintado, L. Garcia-Banuelos, M. Dumas, I. Weber, and A. Ponomarev.
Caterpillar: A business process execution engine on the Ethereum blockchain. Soft-
ware: Practice and Ezxperience, 47(7):1162-1193, Jul 2019.

J. Mendling, I. Weber, W. Aalst, J. v. Brocke, C. Cabanillas, F. Daniel, S. Debois,
C. Di Ciccio, M. Dumas, S. Dustdar, A. Gal, L. Garcia-Bafiuelos, G. Governatori,
R. Hull, M. La Rosa, H. Leopold, F. Leymann, J. Recker, M. Reichert, and L. Zhu.
Blockchains for business process management—challenges and opportunities. ACM
Transactions on Management Information Systems, 9(1), Feb 2018.

R. C. Merkle. Secrecy, Authentication and Public Key Systems. PhD thesis, Stan-
ford University, 1979.

NIST. Recommendation for key management. SP 800-57, Part 1, Rev. 5, 2020.
C. Prybila, S. Schulte, C. Hochreiner, and I. Weber. Runtime verification for
business processes utilizing the Bitcoin blockchain. Future Generation Computer
Systems, 107:816-831, Jun 2020.

P. Rogaway and T. Shrimpton. Cryptographic hash-function basics: Definitions,
implications, and separations for preimage resistance, second-preimage resistance,
and collision resistance. In FSE 2004, Revised Papers, volume 3017 of LNCS, pages
371-388. Springer, 2004.

SICPA. Certus. https://www.certusdoc.com [2020-06-13].

Stratumn. Proof of process. https://www.proofofprocess.org [2020-05-20].

R. Tamassia. Authenticated data structures. In Furopean Symposium on Algo-
rithms, ESA 2003, Proceedings, volume 2832 of LNCS, pages 2—-5. Springer, 2003.
A. B. Tran, Q. Lu, and I. Weber. Lorikeet: A model-driven engineering tool for
blockchain-based business process execution and asset management. In BPM 2018,
volume 2196 of CEUR Workshop Proceedings, pages 56—60. CEUR-WS.org, 2018.
I. Weber, Q. Lu, A. B. Tran, A. Deshmukh, M. Gorski, and M. Strazds. A platform
architecture for multi-tenant blockchain-based systems. In ICSA 2019, pages 101—
110. IEEE, 2019.

