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Introduction
-
Data privacy has become a prominent issue with 
companies ingesting and sharing troves of sensitive user 
data. There are several privacy-preserving technologies 
that range from the simpler data anonymization 
techniques like pseudonymization, data masking, data 
shuffling, etc to complex cryptographic techniques 
such as multi-party computation (MPC), homomorphic 
encryption (HE), etc.

It’s well known that data anonymization does not 
necessarily prevent privacy leaks if/when auxiliary 
datasets become available in the future. One of the 
most widely known examples of such de-anonymization 
attacks was introduced in [3] where the Netflix Prize 
dataset containing movie ratings of 500,000 subscribers 
was augmented with data from IMDB as background 
knowledge, thereby allowing the identification of individual 
Netflix subscribers and uncovering their potentially 
sensitive information (e.g. political preferences, etc).

While technologies like secure multi-party computation 
and homomorphic encryption offer high computational 
security, they do not guarantee output privacy i.e. whether 
results from the secure MPC leak sensitive information 
that can be traced back to particular individuals.

Differential Privacy (DP) is a mathematically justified 
approach that applies random noise to a dataset in such 
a way that it preserves statistical utility, but makes it 
impossible to distinguish if an individual has contributed 
to the results of analysis on a given dataset or not, thereby 
preventing privacy targeted attacks that use background 
information.
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Introduction to Differential Privacy
-
DP is a privacy preserving mechanism based on adding 
randomized statistical noise, where the probability of 
producing a computation result on two data sets – namely 
one with a given individual’s information in it, and the 
other without – is nearly the same. Differential Privacy 
provides mathematical guarantees about individual 
Personally Identifiable Information (PII) and hence plays 
a vital role when it comes to data sharing. Sharing is 
better facilitated when individuals have guarantees that 
the result is nearly the same irrespective of whether their 
data is included in the set (e.g. for statistical analysis or 
algorithm training).

However, DP does not guarantee that an attacker will not 
learn about an individual even if their data is not part of 
the dataset being protected. DP only hides differences 
between datasets that differ by one individual, not whole 
groups. For example, assuming an individual answers a 
survey in a particular manner, applying DP techniques to 
protect the dataset will not allow an attacker to guess the 
answer an individual provided. However, if the individual’s 
behavior is the exact same as their cohort, and if the 
attacker knows that some people in the group answered 
the survey in a certain manner, the attacker can guess 
how the said individual would have answered the survey. 
Essentially DP doesn’t prevent an attacker from drawing 
conclusions about an individual based on known cohorts 
or general population.

There are two common flavors of differential privacy - 
local and global.

+ Global (or standard) differential privacy is performed 
on outputs to queries run on an already aggregated 
group-level dataset . This allows an individual to 
deny being part of a dataset based on the output of 
a query. Global DP is performed when the end users 
provide their raw data (without noise addition) to an 
aggregator (curator). The aggregator then applies 
DP techniques (adds noise) to transform this data 
and publish it. The disadvantage of this model is that 
the aggregator node needs to be trusted enough for 
the end users to send their raw data to it (example: 
Census Bureau).

+ Local differential privacy is performed on individual 
data before any aggregation, similar to the 
randomised response method proposed by Warner in 
1965 [18]. In this model, the aggregator doesn’t need 
to be trusted because it doesn’t have access to the 
raw user data – each end user applies noise to their 
own data before sending it to the aggregator. Hence, 
the aggregator can publish all the data collected 
from the end users.
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The “one size fits all” approach of global DP also ignores 
the reality that data privacy is a personal concept, and 
that different individuals may have very different privacy 
expectations for their personal data. To cater to this, 
personalized differential privacy [16] has been proposed 
that applies differential privacy techniques at an 
individual-level instead of using a single, global parameter 
for all individuals in a database. In other words, a privacy 
budget is set for each record in a database instead of for 
the whole database.

Differential Privacy can be executed in an interactive or 
non-interactive setting. Interactive versions, as the name 
implies, entail a two-way communication between the 
data curator and the client which is querying the dataset. 
In order to respond to the client queries, the curator 
has to be online and keep track of the privacy budget 
assigned for each client. Non-interactive DP is a one-way 
protocol used for releasing the dataset to the public. The 
data is preprocessed by applying the DP mechanism 
and revealed to the ‘public’ for independent statistical 
analysis. In this setting, the data can be used by anyone 
to compute answers to any queries without the need 
to interact with the curator. One particular type of non-
interactive mechanism is the generation of a synthetic 
dataset that allows the answers to a certain class of 
queries to be approximated [5, 6, 7].
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Definitions
-
This section provides definitions for some DP parameters 
and properties. 

	+ Query sensitivity - The sensitivity of a query or a 
function shows how much the output is affected by 
the addition or removal of a record in a dataset. Low 
sensitivity implies that the output is not severely 
affected by the change and only a small amount of 
noise is sufficient to preserve privacy.

	
	+ Privacy budget - One of the limits of differential 

privacy is that each time a differentially private 
computation takes place, there is a bit of privacy loss. 
Typically data curators set and enforce a maximum 
allowed privacy loss parameter which is referred to 
as the privacy budget. Each query is treated as a 
privacy expense. When many queries are allowed on 
the dataset, incremental privacy loss can result in 
the entire privacy budget being spent. It is important 
to carefully monitor the sensitivity of queries in order 
not to exhaust the budget too quickly and to be able 
to halt access to data (limit number of queries) if the 
budget is exceeded.

	
	+ Epsilon-DP - A function F (wrapping a query and 

introducing the randomness) provides ϵ-DP if the 
probability of F producing a given output changes by 
at most a multiplicative factor of eϵ when the input 
is changed by adding or removing a record of one 
person. The smaller the value ϵ, the better the privacy, 
but the worse the accuracy of results. In particular, 
ϵ = 0 means perfect privacy, but unfortunately, 
the results will be useless because the noise will 
completely skew the output. On the contrary, larger 

values of ϵ allow better utility, but lead to lack of 
privacy. The main problem in DP is finding a balance 
between the privacy loss and the accuracy.

	+ Composability - Robustness under composition [1] 
is the property of DP that when multiple analyses 
are performed on data describing the same set of 
individuals, then, as long as each of the analyses 
satisfies differential privacy, it is guaranteed that all 
of the information released, when taken together, will 
still be differentially private. The privacy loss does 
accumulate, though, so each query may use only a 
part of the overall budget.

	+ Noise generation - Differential privacy is achieved 
by the addition of a certain amount of numerical 
noise to either the raw data or to the results of 
the queries performed on the raw data. The noise 
values are usually drawn from symmetric probability 
distributions (e.g. Laplacian or Gaussian), where 
the scaling parameter which affects the size of the 
picked numbers depends on the query sensitivity and 
a given budget.

	+ Approximate-DP - Epsilon-DP (also called pure DP) 
imposes certain complexity and inflexibility due to 
its strictness. The definition was relaxed with the 
concept of approximate differential privacy that 
introduced an additional parameter δ where the 
privacy guarantee needs to be satisfied only for 
events whose probability is at least ≈ δ (i.e. it is ϵ-DP 
“except with probability δ”) and even for very small δ, 
the complexity could be reduced significantly [9, 19].
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What types of attacks does it help against?
-
This section outlines some of the types of attacks that 
Differential Privacy helps protect against.

	+ Database reconstruction attacks (DRAs) [4,17] - 
Assuming the database to be a collection of rows, 
one per individual, with each row having a lot of non-
private data and one secret bit per individual, the goal 
in a reconstruction attack is to determine the secret 
bits for nearly all individuals in the dataset.

	+ Re-identification attacks via record linkage or 
inference - This refers to the identification of one or 
more individuals in a de-identified dataset by uniquely 
linking a record in a de-identified dataset with records 
in a publicly available dataset. Sometimes individuals 
can be identified by inference, based on attributes 
specific to them. Differential privacy effectively hides 
the influence of an individual, or groups of individuals 
on queries performed on a dataset thereby providing 
protection against such attacks.

	+ Side channel attacks - This includes different types of 
attacks like timing attacks or privacy budget attack. 
When a certain condition is met, by intentionally 
pausing for a long time in the query code, the privacy 
mechanism reveals one bit (yes/no). The privacy 
budget attack checks how much the given privacy 
budget has decreased when the outer query returns. 
[2]
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When does Differential Privacy fail?
-
Collusion

Suppose a DP system allocates a certain privacy budget ϵ 
to data analyst A and the same budget ϵ to data analyst B, 
for querying a dataset. Both analysts can make the same 
set of queries independently thereby using up their privacy 
budgets. Even with composably secure DP, if A and B decide 
to collaborate and share their answers, the total privacy 
loss might become 2ϵ. Collusion is typically only an issue 
for global DP model wherein a single party answers queries 
from different analysts each of whom might have their own 
privacy budget.

Correlation

DP might be vulnerable if it assumes all rows in a dataset 
(each from a different individual) are independent. It is 
very natural to have dependence due to social interactions 
between people (e.g. friendship relationships in social 
network graphs). Paper [15] demonstrates a Bayesian attack 
on DP using a real-world dataset exploiting the correlation 
between location and social information. In such a case, DP 
underestimates the amount of noise required to achieve the 
desired privacy bound, thereby enabling an adversary to 
perform sensitive inferences.

Is Differential Privacy universally applicable?
-
Unfortunately, DP isn’t universally applicable. It must be 
understood that DP does not provide a general framework 
suitable for all domains and applications. To apply DP 
techniques, one needs to analyse the setting under which 
the data is being released or analysed, sensitivity of data 
and the kinds of queries required for the analysis. In other 
words, for each application domain, a differential privacy 
implementation should be carefully “handcrafted”.
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Differential Privacy at Guardtime
-
Guardtime is exploring potential use cases around 
applications for differential privacy. Some of these include:

	+ Data Collaboration Platform - There are instances 
where the data set is large and the custodian (e.g. a 
biobank) needs to give access to third parties to run 
analytics. Differential privacy can be applied when the 
data custodian needs to control the number and type of 
queries run on the data, to ensure  no/acceptable privacy 
leaks.

	+ Supply Chain Shortages - In a supply chain, to determine 
inventory shortages, secure aggregation protocols are 
typically run on individual entities’ inventory data to 
gather the total inventory for a given product without 
revealing individual data. Secure multi-party computation 
is commonly used to provide computational privacy on 
data aggregation done between mutually distrustful 
parties. However, it may need to be augmented with 
differential privacy to provide mathematical guarantees 
on privacy of the output. [8]

	+ Federated Learning - Federated learning trains AI models 
on end devices, and then transfers those learnings back 
to a global model without the need for data to leave the 
device. In order to handle potential privacy leaks from 
the updates that are being sent back to the global model, 
DP techniques are typically applied, thereby providing a 
privacy-preserving mechanism to effectively leverage 

the compute resources inside end devices to train 
machine learning models. The goal is to ensure that the 
learned model does not reveal:

•	 whether a certain data point was part of the training 
data [11], or

•	 if a client/end device contributed to the training data 
[10]

	+ Healthcare - Considering the example of an AI-in-
healthcare setting, if multiple hospitals participate in 
training a centralized model, then differential privacy 
techniques can be applied to ensure that information 
about a specific patient stays hidden, or information 
about a specific hospital stays hidden. The impact of 
number of clients (hospitals in this case) on the accuracy 
and model performance is an area to be explored.

	+ Business Process Modeling - Differential privacy 
techniques (local or global as the case demands) can be 
applied to business process modeling to guarantee the 
privacy of intermediate data shared between different 
flows in a process. Differential Privacy tells us whether 
a given intermediate result or a final output of a process 
reveals information about a given input. This can be 
applied to use cases modeled by any general purpose 
workflow engine.
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Conclusion
-
While there have been several prior efforts using 
anonymity, encryption, access control on queries etc 
to address privacy problems around the need for a data 
curator to release statistics over their dataset without 
revealing information about a particular value itself, 
differential privacy has proven far more successful owing 
to the rigorous definitions and mathematical guarantees 
it provides. Differential privacy aids in quantifying and 
bounding the amount of information leaked about 
individual records by the output of computations 
performed on a dataset. 

In practice, however, there are challenges. There are no 
stringent guidelines on choosing privacy parameters. 
As analysts have shown, companies that employ 
differential privacy, Apple [13] and Google [14] in 
particular cut corners and implement weaker privacy 
techniques than they claim in their publications [12]. 

When deploying differential privacy techniques, there 
is always a trade-off between statistical accuracy and 
privacy loss. While there are several metrics to assess 
the quality of a published dataset, challenges remain 
in binding these metrics to legally defined risk factors. 
Also, the parameters need to be tuned carefully based 
on the complexity of the data and also of the queries 
allowed by the system.

Despite mature academic research in the area, industry 
adoption of differential privacy has been slow. However, 
with the increasing trends and visibility in the use of 
differential privacy in various real life applications, 
industry practitioners can use the lessons learnt 
from prior initiatives to successfully apply differential 
privacy techniques to address privacy breaches while 
overcoming practical challenges. 
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