
 

MAY 2020 

 

 

Blockchain Receipts using History Trees 
by 

Risto Alas, Hema Krishnamurthy 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GUARDTIME.COM 

https://guardtime.com/


 

Abstract 
A blockchain receipt (also known as a “light client proof”) provides proof that                         

some data existed at a specific time, and that the data was approved by the                             

validators of the blockchain. The receipt contains all the information needed to                       

prove an individual input was indeed part of an approved block. This paper                         

proposes a patented method to optimize the way old receipts are verified against                         

new blocks, by the use of history trees. 

To provide additional evidence to the users that the older parts of the history tree                             

were not altered after the fact, we propose timestamping the older parts of the                           

tree with KSI, which periodically publishes the root hash of its calendar (history)                         

database in physical printed newspapers and thus provides an additional security                     

anchor.  

Guardtime’s KSI® blockchain is a data-centric security technology relying on                   

hash functions and binary hash trees only. Whilst KSI is based on a calendar                           

history blockchain, signing and verification times are extremely fast relative to                     

other blockchains. Signatures can be obtained in around a second, and verification                       

responses can be obtained in milliseconds.  

 

 

Keywords: blockchain, Merkle trees, receipts, history trees, KSI® 

   

2 Guardtime / Blockchain Receipts using History Trees 

 



 

Introduction 
A blockchain receipt (also known as a “light client proof”) provides proof that                         

some data existed at a specific time, and that the data was approved by the                             

validators of the blockchain. The receipt contains all the information needed to                       

prove an individual input was indeed part of an approved block. Receipts are                         

useful if one does not wish to fully process and validate the entire blockchain, but                             

rather wants to rely on the consensus of validators to make claims about the                           

blockchain state (for example, the validator consensus can claim that a balance of                         

a particular account was a specific value). Receipts can also be used to simply                           

prove that a transaction was published in the blockchain. In general, the meaning                         

of a receipt is defined by the operating rules of the blockchain that issued it. 

The need for short proofs may come from performance requirements — for                       

example, a smartphone may not have the computation power to process the                       

blockchain in full. Privacy considerations can also play a role, in which case all the                             

data needed for full re-validation may not be available. Additionally, blockchains                     

typically do not wish to fully re-validate each other’s transactions when they are                         

interacting.  

Blockchain receipts can be generated by anybody who has (enough) access to the                         

corresponding information on the blockchain. All the information for generating                   

receipts is present on the blockchain itself; indeed, a receipt is essentially just a                           

block from the blockchain, with some irrelevant parts torn off. The receipts can                         

also provide a mechanism for accountability of the blockchain client — i.e., a full                           

blockchain client can produce the electronic receipt to prove a transaction he/she                       

was part of. The immutable proof can be submitted to system auditors for later                           

audit. 

The generalised idea of blockchain receipts has been around for a while. For                         

example, Bitcoin has always had the idea of Simple Payment Verification. For                       

Proof-of-Stake blockchains (permissioned blockchains generally fall into that               

category), the receipts generally contain the signatures of sufficient majority (e.g.,                     

more than 2/3) of the validator set on a particular block hash, and then a Merkle                               

proof regarding specific data under the same block hash.  

 

3 Guardtime / Blockchain Receipts using History Trees 

 



 

Blockchain receipts using history trees 
Typically, each block in the blockchain contains a hash of the previous block — but                             

here we propose keeping a whole or partial tree of previous blocks to increase                           

efficiency of traversal. Efficient tree structures are used to store the history trees                         

so the storage doesn’t grow too much. 

Merkle trees, named after Ralph Merkle who originally described them, work in                       

the following way: inputs are arranged in leaves of a binary tree; the value of each                               

parent node is computed as the hash value of the concatenation of the values of                             

its child nodes; by tracing the path from the root to the leaf containing the target                               

value, one can generate a hash chain that proves participation of the target value                           

in the tree, without having to know the entire tree.  

History trees are Merkle trees whose leaf nodes represent blocks in a blockchain,                         

which in turn may contain transactions, various metadata, state information                   

and/or any other information of the specific blockchain. Each node in the history                         

tree is labeled with a cryptographic hash, which fixes the contents of the subtree                           

rooted at that node. 

Generally, with blockchains, it is not possible to authenticate old blocks on their                         

own, for different reasons. For instance, for Proof-of-Stake blockchains that                   

utilise “slashing”-type consensus algorithms (to punish dishonest validators), only                 

the more recent blocks have “real money staked on them”. If                     

double-signing/forking of a more recent block is found, its validators will lose                       

large amounts of money; but that does not hold for old blocks — their validators                             

may no longer hold their deposits in the system, and therefore the malicious                         

parties cannot be punished directly by the blockchain. Hence, one can directly                       

authenticate only the most recent blocks, but not old blocks. 

 

 

 
Figure 1. A typical blockchain data structure where every block contains a hash of its preceding                               

block. The circles represent hash values; the arrows point at the objects being hashed. 

4 Guardtime / Blockchain Receipts using History Trees 

 



 

To authenticate the data in the old blocks, one would normally have to traverse all                             

the way back through the blockchain, block-by-block, and check that every block                       

contains the hash of its preceding block (Figure 1). When one finally reaches the                           

old block successfully, the old block is considered validated. The same goes for old                           

receipts, which are essentially slices out of old blocks. 

While the above verification process is secure, it is rather inefficient: a blockchain                         

may generate millions of blocks per year, and thus a verification of an old block                             

would take millions of hashing steps for every year of block time. Hence, we                           

propose the use of history trees to shorten such proofs (Figure 2). Every block                           

will not only contain a hash of its direct predecessor block, but rather an entire                             

tree of hashes of all predecessor blocks. This will significantly shorten the proofs                         

for authenticating older receipts/blocks. 

 

 
Figure 2. A blockchain with a history tree added, represented with dark blue color. For simplicity,                               

we have shown the tree only in block number 4. In practice, the other blocks would contain similar                                   

trees that would point to their respective preceding blocks. The circles represent hash values; the                             

arrows point at the objects being hashed. The values h1, h2 and h3, represent hashes of blocks 1, 2,                                     

and 3 respectively. 

Note that the history trees do not take much space — they take noticeably less                             

memory than storing the blockchain itself: indeed, the history tree leaves will only                         

store one hash per every block (plus additional intermediate hashes, which will                       

5 Guardtime / Blockchain Receipts using History Trees 

 



 

roughly only double the total amount of hashes). Additionally, as the old blocks                         

never change, the history trees in successive blocks share large sub-trees;                     

therefore, much of the history tree data can be shared among multiple successive                         

trees. Such incremental storage of a history tree will take merely log(T) hash                         

values in the worst case for a new block numbered T. The average case                           

performance is even better: only 2 new hash values are required on average per                           

each new block (the rest of the data will be shared with the tree from the previous                                 

block). 

 

Nonetheless, to save space, a whole “new” history tree can be created periodically                         

i.e. older parts of the history tree can be archived/pruned and the “frozen root of                             

the old tree” used as the first leaf of the new tree. We also consider the option of                                   

including only important blocks in the history tree (e.g., only the blocks that                         

contain high profile transactions would get aggregated into the history tree). 

We also consider another solution to enable efficient verification of old                     

blocks/receipts. The idea involves simply recording the old validator public keys,                     

and then verifying old blocks/receipts the same way as new blocks would be                         

verified: by verifying them against their validators’ signatures. However, this                   

solution would not be compatible with Proof-of-Stake incentives, as the old                     

validators no longer have any stake in the system, and thus they would be free to                               

sign any old invalid blocks after the fact, without fear of punishment. Note that                           

trusted timestamping does not fix this issue, because technically, the malicious                     

validators could have signed a parallel fork of a blockchain a long time ago and                             

simply kept it a secret for a while, and then release the malicious fork only after                               

their staked currency is no longer bonded (that is, it is no longer assigned to the                               

same keys and cannot be slashed by the consensus algorithm). 

Compared to this idea of validating against the old validator set, the history tree is                             

stronger against blockchain forks (just like the idea of traversing millions of                       

hashes, but more efficient) — i.e., it fixes a specific blockchain history in place,                           

unlike just fixing a validator set which may have been compromised at some point                           

in the past, thus forking the blockchain. And because the history tree is                         

compatible with Proof-of-Stake implementations, it is also fully compatible with                   

other developments like the Tendermint consensus protocol. Examples of                 

publicly known big Proof-of-Stake implementations are Tendermint's Cosmos               

blockchain and Ethereum's Casper. 

To ensure that malicious actors do not modify older parts of the history tree after                             

the fact, we propose that they be timestamped with KSI, which periodically                       

6 Guardtime / Blockchain Receipts using History Trees 

 



 

publishes the root hash of its calendar (history) database in physical printed                       

newspapers and thus provides an additional security anchor.  

KSI operates in fixed-length rounds. In each round inputs are aggregated into a                         

hash tree and the root hash of the tree is published in a distributed “history”                             

database (also called a “calendar” database) that every customer has a copy of.                         

For every asset included in the tree, a signature is returned to the customer that                             

identifies the computation path, through the hash tree, from the asset's hash                       

value, up to the root hash value of the current state of the history database. The                               

signature also includes “sibling” values necessary to recreate the root hash. With                       

access to the public history database, anyone, anywhere, can receive data and,                       

without reliance on a central trust authority, verify the signature which includes                       

proof of time and integrity and attribution of origin. Ideally, Guardtime’s KSI                       

signatures themselves can be viewed as receipts. 

Another option is for auditors to periodically anchor snapshots of the history tree                         

into other blockchains. Tamper-evident hardware could also be used to securely                     

store the history trees. 

In blockchains where the validators are known entities, as is typically the case in                           

permissioned blockchains, the receipts could also embed CA certificates for the                     

validator keys, thus making the validators more transparent all the time. This                       

might even allow the receipt verification code to verify the receipts using                       

validation keys it does not yet know about, but that would require the users to                             

believe that the given signing identities were held by honest participants at the                         

time of signing (perhaps the signing organisations are generally trusted by the                       

user), as well as trusting the certificate issuing CAs.  

 

As a convenience, for some use-cases the receipts could even be human-readable,                       

for example, PDF files signed by PKI signatures of the validators; the (separate)                         

executable for verifying the blockchain might still contain the validator set                     

history, so the user would not have to manually verify the signer identities. 

One advantage of our approach is that the validator set can completely change                         

over time, and as long as the companies of the last validators are trusted, the                             

latest validator set can directly be authenticated. A downside is that 10 years                         

later, one might not remember which companies were supposed to even host the                         

blockchain back then; however, if and when this becomes a problem, the new                         

validators could always keep a list of the old validators around ie as long as you                               

trust the new validators, you can get the entire validator list from them. 

7 Guardtime / Blockchain Receipts using History Trees 

 



 

 

Conclusion 
Typically, each hash in the blockchain contains a hash of the previous block – but                             

our approach of using history trees wherein we use a whole or modified partial                           

tree of previous blocks to increase efficiency of traversal is novel. This makes the                           

verification of old receipts/blocks much more efficient. We also propose using KSI                       

to sign the history tree, which gives us the added advantage of getting a quicker                             

timestamp (under 2 seconds) with long term verification capabilities since the                     

calendar root hashes are published to a newspaper. 

 

References 
Keyless Signatures' Infrastructure: How to Build Global Distributed Hash-Trees 

https://eprint.iacr.org/2013/834 

Event Verification Receipt System and Methods - 

http://www.freepatentsonline.com/y2020/0104294.html 

 

8 Guardtime / Blockchain Receipts using History Trees 

 

https://eprint.iacr.org/2013/834
http://www.freepatentsonline.com/y2020/0104294.html

